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ABSTRACT
A key component of recent privacy rules is restriction on the flows of
personal information or data based on information categories. This
tendency conflicts with the fact that data’s meaning is not stable but
depends on how it was formed and with what other information it is
combined. These properties of information challenge naive intuitions
that information ‘flows’ like a fluid, such as water or oil. Rather,
we build on on Dretske, Pearl, and Nissenbaum to develop situated
information flow theory (SIFT): a view of information flows as
causal flows with nomic associations due to a larger context of causal
relations. The semantics of situated information flow are precise
within the statistical framework of Bayesian networks. We argue
this understanding of information flow has three policy implications.
(1) Restrictions on data transfers are more precise and enforceable
than restrictions on information flow. (2) Information ‘categories’ or
meanings must be defined relative to a particular class of observers
and take into account their reasonable background information. (3)
The semantics of data are ambiguous when there is uncertainty about
causal structure, and this structure is learned from data aggregation.
Hence, the information asymmetry between data aggregators and
individual data subjects are one reason why data processors are
‘opaque’ and difficult to regulate.
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1 INTRODUCTION
Information technologies get their regulatory relevance from operat-
ing in the world at large. They are embedded in large social systems,
and the information processed by these systems gets their meaning
from this context. This is evident in contemporary breakdowns in the
management of privacy online. Recent examples of privacy violation
in a “big data” context are due to the fact that the semantics of data
are not clear or stable, but rather that due to data mining techniques
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and other innovations [51] [56], “data’s meaning has become a mov-
ing target” [43] because the inferences data enable depend on its
sources and what other data it is combined with.

We argue that a conceptual problem is at the heart of these privacy
violations. There is a disconnect between how “information flows”
are discussed in natural language in the discussion of data protection
and privacy regulations, and how the term is used in mathematics and
engineering practice. On one hand, almost by definition information
technology operates on information, and the specific details of this
processing in any case can be the result of many hours of engineering
labor. On the other, regulators have imposed conditions on the col-
lection, transfer, and use of information and data in terms that they
understand. At issue is that again and again, intuitive understandings
of what information means are violated by technical systems that
discover new meanings through data mining and machine learning.
The lack of a shared theory of what information is and how it gets its
meaning disconnects laws and public expectations from engineering
practice.

A scientific theory of how information flows and gets its mean-
ings is needed to clarify the causes and potential solutions of these
challenges to regulating privacy. Ideally, such a theory would bridge
between law, social theory, statistics, and computer science, bringing
each field into alignment. We build on prior work on Contextual
Integrity [58], a theory of privacy inspired by law and social theory
with many applications in computer science [4, 6, 9, 16, 22, 44, 46,
47, 62, 71, 74, 84], which identifies privacy as “appropriate informa-
tion flow”. These motivations for this paper are elaborated in Section
2.

Section 3 reviews data protection and privacy laws for how they re-
fer to information and data flows. This review of regulations demon-
strates the pervasiveness of regulatory language about “informa-
tion flow”, showing the practical implication of understanding what
the term means for the purpose of engineering compliant systems.
Special attention is paid to how recent laws, such as the Califor-
nia Consumer Privacy Act and Europe’s General Data Protection
Regulation distinguish between categories of information. These
regulations show a general recognition that data moves and has
meaning, but are imprecise and sometimes in implicit disagreement
about how and why. This paper argues “information flows” in a way
that is disanalogous to water or oil or electricity. Rather, we propose
that “information flow” is actually two things: a flow of causality,
whereby one event influences the outcome of another, and regular
associations between events. The associations give meaning to an
observed event (which can include data from a user interface, for
example), but those associations depend on a broader context of
causal relations. We name this account of information flow situated
information flow, to emphasize that the meaning of information
depends on the entire situation in which it takes part. Situated in-
formation flow theory (SIFT) follows from well established formal
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representations of causal models used in statistics [65]. We develop
SIFT in Section 4.

Section 5 concludes with an outline of the implications of SIFT
for data protection and other regulation.

2 MOTIVATION
We motivate the following inquiry with three examples of privacy vi-
olation that depend on data having unexpected meaning. We ground
the idea of a privacy violation in Contextual Integrity (CI) [57] as a
field of privacy scholarship. The motivating examples challenge CI’s
definition of information flow. A new theory of information flow is
needed to address these cases.

2.1 Examples of privacy violations from
unanticipated semantics

Consider three examples of privacy violations in which an unex-
pected “information flow” happens because the full semantics of
information shared by the data subject is not known to them.

Example 1. Target, the retailer, has learned that purchases of cer-
tain products are correlated with pregnancy and childbirth, but not
obviously so. In one story, Target sends coupons for baby related
products to a woman’s home after she buys scent-free hand lotion,
which upsets her father. Target has learned that the coupons are
less effective if the detection of pregnancy is too obvious, and has
learned to surround these coupons with other coupons for “random”
products so that they are not so revealing.[42]

Example 2. Research has shown that a number of sensitive and
private attributes–including sexual orientation, political views, eth-
nicity, and psychographic profiles–can be inferred from social media
posts even when these topics are not explicit. [49] Allegedly, social
media data has been used to develop psychographically targeted
advertising, exploiting personality traits that were never intended to
be revealed by users. [13, 82]

Example 3. In 2017, Quartz discovered that Android smartphones
were collecting the identifiers of the cell phone towers the phone
was collecting and sending them to Google even when location
services were disabled [14]. Because cell phone tower identifiers are
excellent proxies for the smartphone location, this was deemed by
Quartz to be a violation of consumer expectation of privacy. After it
was discovered, Google changed the phone software so that it would
no longer collect this information.[3]

In these examples, information revealed by the data subject is
ostensibly “about” one attribute, but upon investigation the data
reveals other attributes as well. We will argue that the true “topics”
of any data set in question are not inherent to data, but rather depend
on the processes that generate it. That is why there may be hidden
private variables (such as pregnancy or personality type) that are
unknown to the data subject but known to the analyst who can see
behavioral patterns in aggregate.

2.2 Contextual integrity
Contextual Integrity (CI) [57, 58] is a field of privacy scholarship
that defines privacy as “appropriate information flow”. In the core
theory of CI, information flow is “appropriate” based on whether it

adheres to social norms that hold within particular social contexts or
spheres. These norms can be expressed in terms of five parameters:

(1) The data subject, whom the data is about.
(2) The sender of the data.
(3) The recipient of the data.
(4) The information type or attribute, what aspect of the subject

it is about.
(5) The transmission principle, a condition on flow such as obli-

gation, confidentiality, or reciprocity.

These norms are legitimized by the ends, purpose, and values of the
social sphere they are recognized to be a part of.

CI has had broad uptake as a theory of privacy within the critical,
legal, and technical research communities [4, 16, 22, 39, 40, 44,
46, 47, 62, 70, 71, 73, 74, 84]. Recent work [9] has shed light on
how computer science researchers in particular have opened up new
lines of inquiry within the field, identifying several ‘theoretical gaps’
that are prompts for new research. An example is the difficulty that
Contextual Integrity, as currently resourced, has with conceptual-
izing how information flows between or within multiple contexts,
taking on multiple meanings. This is an important omission to ad-
dress when so many privacy violations come from cases of context
collapse [20, 52].

Information norms, according to CI, treat information’s meaning
as a function of the social context of its collection and use. As
information flows evidently have meaning besides those prescribed
by its social context, we must look outside the theory to explain
why and how information avails more insight than is expected from
social convention. Legal regulation sometimes shares with social
convention this naivete about unpredicted uses of information.

An alternative vision of privacy, dubbed Origin Privacy, [61] has
considered the value of replacing the “attribute” parameter with
a reference to the origin or source of the information. While the
work on Origin Privacy has offered mixed results, it has shown that
references to information attribute are ambiguous. Any particular
information flow may be about many attributes or topics. In some
cases it is easy to establish some of these attributes. But in general it
is difficult to determine what attributes an information flow is not
about.

3 DATA PROTECTION REGULATIONS
Data protection statutes and agreements respond to political interest
in personal data protection. A challenge in information law is the
design and application of regulations to increasingly complex and
innovative uses of personal data with information technology. The
difficulty of this challenge comes in part from the fact that lawyers
and technologists often speak literally different languages [79]. The
law is written in what computer scientists call “natural language”,
the normal ways that human beings learn to communicate. Special-
ized legal language is taught as part of legal training, but it is largely
articulable within normal natural language. Natural language con-
tains terms with necessary ambiguity [55]; Hildebrandt [41] argues
that contests over the ambiguity of human language is a productive
part of legal practice.

Information technology, on the other hand, is often designed and
implemented according to specifications that are described math-
ematically or in software code. Mathematical and programming
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languages are generally not “natural” languages, but rather have
different syntax and semantic rules that guarantee strict and specific
interpretations. In the case of programming languages, the semantics
of the language are guaranteed by the program compiler, which
translates the code into machine instructions.

A response to this challenge is the translation of data protec-
tion laws into formal logical statements. These logical statements
can then be analyzed for the possibility of complete or incomplete
automated enforcement. Prior work [5, 17, 18, 24] addresses how
particular clauses of data protection regulation the put conditions
on the flow of information can be translated into formal logic and
implemented. This article addresses what is arguably a more funda-
mental ontological question of how information gets its semantic
content, how laws refer to that content, and how can meaningful
information flows be formally modeled. This section compares the
wording of several regulations around their definitions of what is
being protected: how they refer to it (data or information), what sorts
of movements or transfers they are sensitive to, and how they are
sensitive to different types of data. Table 1 condenses the findings,
which are summarized in Section 3.5.

3.1 International Guidelines
While not laws per se, international guidelines such as those pub-
lished by the OECD are “soft-law” regulations that reflect interna-
tional norms.

3.1.1 OECD. The OECD council’s “Guidelines Governing The
Protection of Privacy and Transborder Flows of Personal Data”,
initially proposed in 1980 and amended in 2013, recognize the
importance of interoperable privacy frameworks given continuous
flows of personal data across global networks. It explicitly defines
“transborder flows of personal data” as “movements of personal data
across national borders”.

3.1.2 APEC. The Asia-Pacific Economic Cooperation (APEC)
is a regional economic forum whose initiatives synchronize regula-
tory systems among its 21 members states. Its 2015 Privacy Frame-
work aims to promote electronic commerce while reaffirming the
value of privacy. It is modeled on the OECD guidelines, defining
personal information as:

Personal information means any information about an
identified or identifiable individual. (II.9)

In its clarifying comment, the guideline is explicit about the
possibility of identifying information through aggregation with other
information.

The Framework is intended to apply to information
about natural living persons, not legal persons. The
Framework applies to personal information, which is
information that can be used to identify an individ-
ual. It also includes information that would not meet
this criteria alone, but when put together with other
information would identify an individual. For example,
certain types of metadata, when aggregated, can re-
veal personal information and can give an insight into
an individual’s behavior, social relationships, private
preferences and identity. (II.9)

This regulation makes no special mention of particular categories
of personal information.

3.2 US Sectoral Law
In United States federal law, data protection is mainly regulated
by sectoral law, that is, laws that protect personal information in
particular economic sectors. HIPAA covers the health sector; GLBA
covers financial services. COPPA is designed to protect children’s
information from online data collection. Consumer privacy in sectors
unregulated by specific laws are regulated by the Federal Trade
Commission, which rules on unfair and deceptive practices. Such
deceptive practices can include the violation of terms of service or
privacy agreements to which users of online services consent.

3.2.1 COPPA (US). The Children’s Online Privacy Protection
Act (COPPA) aims to restrict the collection of information from
any child under the age of 13 without first parental consent and the
subsequent ability for parents to access the information collected. It
does this by forbidding data collection without parental consent by
web service operators that target children or have actual knowledge
that they are being used by children. This restriction has been called a
temporal restriction [5], as opposed to a restriction based on attribute.
Many significant breaches of COPPA have been discovered in apps
that are directed at children and collect data from their users prior to
acquiring parental consent [68].

The law refers to a number of examples of kinds of personal
information, include social security numbers, screen or user name,
customer number held in cookie, and device identifier. It does not
treat any one category of personal information differently from the
others.

3.2.2 HIPAA. HIPAA is the US law governing personal infor-
mation in health care. It refers to a sectorally specific category of
information: protected health information (PHI). The definition of
PHI depends less on the semantics of the information and more on
the fact that it has been disclosed to a Covered Entity. An interpre-
tation is that, for example, personal information becomes health
information when it is part of a transaction between a patient and a
health care provider. An exception in HIPAA is made for psychother-
apy notes, which get special protections and are defined as those
notes that are derived from a psychotherapeutic counseling session.
This policy specific to the origin of the data has inspired Origin
Privacy [60].

3.2.3 GLBA. The Graham-Leach-Bliley Act (GLBA) governs
the treatment of personal information by financial services institu-
tions. It defines “nonpublic personal information” as:

(A)The term “nonpublic personal information” means
personally identifiable financial information– (i) pro-
vided by a consumer to a financial institution; (ii) re-
sulting from any transaction with the consumer or any
service performed for the consumer; or (iii) otherwise
obtained by the financial institution.

In sum, the regulation is less concerned with the content of the
information than the fact that a Covered Entity has obtained it, that
it is nonpublic, and that it is personally identifiable.
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Regulation Date Nouns Movement words Category verbs
OECD 1980/2013 personal data “transborder flows”, access, disclosure none
APEC 2015 personal information collection, holding, processing, use, transfer none
COPPA 1998 personal information collection, disclosure none
HIPAA 1996 personal health information disclosing none
GLBA 1999 nonpublic personal information disclosing, access, security disclosing
CCPA 2020* personal information collecting, sharing, access, selling, transfer disclose
NY Financial Services 2017 nonpublic information access, use none
GDPR 2018 personal data transfer reveal, provide

Table 1: Summary of language use in data protection regulations.

At the time of establishing a customer relationship and annually
thereafter, a financial institution must disclose the categories of
information that it collects about the customer.

3.3 US State Law
Some states in the United States have passed their own data protec-
tion laws. These are too numerous and varied to survey in this article.
This section summarizes two recent and notable laws that reflect
different approaches to data protection. The California Consumer
Privacy Act (CCPA) addresses consumer privacy and the sale of
personal information specifically. New York State’s cybersecurity
law focuses on cybersecurity, not privacy, and so protects nonpublic
data in general.

3.3.1 CCPA (US, California). The California Consumer Pri-
vacy Act contains special provisions about the sale of personal data,
though it also covers a more general scope including the collection
and disclosure of personal information.

“Sell,” “selling,” “sale,” or “sold,” means selling, rent-
ing, releasing, disclosing, disseminating, making avail-
able, transferring, or otherwise communicating orally,
in writing, or by electronic or other means, a con-
sumer’s personal information by the business to an-
other business or a third party for monetary or other
valuable consideration. (CCPA, 1798.140. (9) (t) (1))

The law also specifies that businesses must inform consumers
about the categories of personal information they have collected,
sold, and disclosed. Some, but not all, of the categories of informa-
tion that the law considers personal information are listed in the law.
They include topics as diverse as a person’s protected classification
(sex, race, and age), inferred behavioral profiles, and network device
identifiers that are linked to a person.

3.3.2 Cybersecurity Requirements for Financial Services
Companies (US, New York). The Cybersecurity Requirements
for Financial Services Companies of New York apply to any legal
persons (individuals or non-governmental entities) operating under
banking, insurance, or financial services laws. It refers to “nonpublic
information”, which includes both business related information that
would cause a material adverse impact to a Covered Entity, but also
any information concerning an individual based on an identifier.
The regulation is an expansive cybersecurity policy, not only a data
protection policy, and so mandates the use of risk assessments and
the regular disposal of data to reduce exposure. It is not concerned

with ‘collection’, ‘transfer’, or ‘flow’ of data, but rather refers to
‘access’ and ‘use’.

3.4 EU Omnibus Law
The European Union has a history of omnibus data protection reg-
ulation, meaning its regulation provides a baseline for all personal
data use for all sectors of industry and government. Most recently,
in 2018 the EU’s General Data Protection Regulation (GDPR) came
into effect. Due to strong enforcement clauses in the new law, GDPR
has created a visible response from the commercial sector.

3.4.1 GDPR. The GDPR does not use the term ‘information
flow’, but rather refers to ‘flows of personal data’, or ‘data transfers’.

It also refers ‘special categories’ of personal data:
Processing of personal data revealing racial or ethnic
origin, political opinions, religious or philosophical
beliefs, or trade union membership, and the process-
ing of genetic data, biometric data for the purpose of
uniquely identifying a natural person, data concerning
health or data concerning a natural person’s sex life
or sexual orientation shall be prohibited. (Article 1,
Section 9)

The conceptualization of data falling into categories has impli-
cations for the obligations of data controllers. In particular, data
controllers must provide data subjects with information about which
categories of information are concerned in data processing and trans-
fer (Article 14.1).

3.5 Summary
The regulations surveyed here variously used the terms “data” and
“information”. Most also stipulated restrictions on how the data or
information moves, as if a substance, especially by changing hands or
ownership. This confirms CI’s conception of privacy as appropriate
information flow between different parties.

The regulations rarely address the specific contents of informa-
tion. Individually identifiability is the key criterion for protection
of information. Some references to information ‘attributes’, such as
health information and financial information, devolve into conditions
on the kinds of institutions involved in data transfer. This indicates
that these sectoral privacy laws may fail to address how information
that is meaningfully relevant to health and finances passes through
entities that are not covered.

Some data protections rules (GLBA, GDPR, CCPA) have at-
tempted to address the potential privacy violation of data reuse by
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stipulating that data processors must reveal to their data subjects the
categories of information that they have collected. It is not clear how
enforceable this requirement is in cases where inferable attributes of
the information are unknown. Some rules refer specifically to new
kinds of information resulting from processing, such as behavioral
profiles drawn from other personal information.

COPPA is most specific about how information falls under its
scope. It applies to operators that direct a web service at children or
have actual knowledge that a child is a user. These conditions, which
refer to the total situation of an operator and its users, structure the
probability that a particular user is a child.

4 SITUATED INFORMATION FLOW THEORY
(SIFT)

Privacy violations due to the unexpected semantics of data and
the need to regulate information flows based on the processes that
generate them motivate new thinking about how technical and social
platforms can be designed (Section 2). It seems that many of our
socially comfortable expectations of information flow, for example
those expressed by CI, are ontologically mismatched to with how
information works in the world. Legal regulations have attempted to
address privacy by restricting flows of personal information, often
without making it clear either what “information” means or what
information means (Section 3).

It is surprising that such a foundational question has not yet met
with a scientific, transdisciplinary answer, as the meaning of data
is of great pragmatic concern to science and industry. This section
briefly reviews interdisciplinary theory (Section 4.1) and proposes
a theory of information flow that synthesizing several literatures
(Section 4.2). This theory, which we call situated information flow
theory (SIFT), builds primarily on the philosophy of Dretske [27]
and the statistics of Pearl [67] to argue that information flows are
best understood as causal flows situated in the context of other causal
relations. This theory is formalized in terms of Bayesian graphical
models in Section 4.3. This formalization reveals why many uses of
the term “information flow” are ambiguous (Section 4.4). SIFT is
then used to shed light on the motivating examples.

4.1 Information across the disciplines
Different academic disciplines variously define “information” with
more or less rigor and consistency. A consensus definition of seman-
tic information has eluded philosophers [28]. Linguistic analysis of
the modern use of the word “information” has concluded that it is a
confused creole of distinct and incompatible meanings [63]. How-
ever, in the natural sciences most definitions of information build on
Shannon foundational work on of information theory [72], which
has had broad application in many fields [33], including physics
[45, 85] and biology [1, 21]. Among philosophers, Dretske [27]
perhaps most closely followed mathematical information theory for
inspiration.

With respect to its application in systems of humans and docu-
ments, Library and Information Sciences (LIS) has fruitfully ana-
lyzed the term ’information’ and discovered that information can
be both a process and a thing [11]. In LIS, Brier [10] provides a
comprehensive account of “cybersemiotics” that traces the relation-
ship between hierarchical layers of semiotics ranging from the basic

information theoretic sense developed by Shannon [72] to social
and linguistic meaning based on the social theory of Luhmann [50].
While a compelling theory, this view currently suffers from a lack of
mathematical formulation.

There is a long history of literature on information flow in com-
puter security and privacy research [7, 38, 53, 69, 76] This article
draws especially on Tschantz et al. [80], who demonstrate that the ba-
sic security property of noninterference [36] can be aptly understood
in terms of Pearl’s [67] theory of probabilistic causal relations.

Pearl’s theory of causation is itself attractive for its interdisci-
plinary acceptance. Cognitive scientists have argued that graphical
models such as those used by Pearl are robust models for how hu-
mans learn and understand causal relations [34, 35, 37, 75]. Because
of these results, we see causal graphical models as a promising
bridge between rigorous probability theory based views of infor-
mation and qualitative legal logic. Within computer science’s study
of privacy, Pearlian causation has elucidated differential privacy in
work by Tschantz et al. [81].

4.2 Situated Information Flow
We posit situated information flow as a scientific, statistical view of
information that addresses the practical challenges of unintended
data meaning. Specifically, this account of information flow builds
on the philosopher Dretske [27]. According to Dretske’s theory, a
message carries information about some phenomenon if a suitably
equipped observer could learn about the phenomenon from the mes-
sage. In other words, a message carries information about any topic
that can be learned from it. For an observer to learn from it, the
message must have a nomic connection with its subject, where here
“nomic” means “law-like” or “regular” [27].

To make this more precise, we can model these regularities for-
mally. As has been known since Shannon [72], information only
flows when a signal has many different potential values. As fa-
mously said by Bateson [8], information is “a difference which
makes a difference”. The mathematics of probability and statistics,
which provide formal tools for understanding the relationships be-
tween variables whose values are uncertain, are intimately connected
to the mathematics of information for precisely this reason. When
two random variables are related in such a way that one can learn
about the state of one through an observation of the other, then they
have mutual information.

Definition 4.1 (Mutual information [15]). For two random vari-
ables X ,Y with joint probability distribution PXY (x ,y), the mutual
information I (X ;Y ) is given by

I (X ;Y ) = EPXY loд
PXY
PX PY

Two random variables X ,Y that have no mutual information,
I (X ;Y ), are conditionally independent. We will denote conditional
independence with X ⊥⊥ Y , or X ⊥⊥ Y |C if the variables are condi-
tionally independent given another variable C.

For two variables to have positive mutual information, it is not
sufficent for observed events to be empirically correlated; this corre-
lation may be spurious unless it is supported by robust probabilistic
relationships between events. Pearl [67] provides a robust and widely
used formal account of structural flows of probabilistic influence
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Figure 1: Alice’s commute to work.

through causal relationships. Pearlian causation and Bayesian net-
works can provide a useful and tractable formalism for understanding
the meaning and value of information flows. The advantage of this
formalism is that it can model the relationships between both tech-
nical components and social practices in an apples-to-apples way,
because all aspects of a sociotechnical system can be modeled as
probabilistic events.

4.3 Causal probabilistic graphical models
In our approach, privacy depends on appropriate information flow [59],
where information is defined as that which allows somebody to learn
about something else based on its regular associations with it [27].
We find a formalization of this idea in causal Bayesian networks [65],
a common formalism in statistics, which represent the relationships
between random variables with a directed acyclic graph. Bayesian
networks have the attractive property that it is easy to derive some
independence relations between variables from the graph structure
of a Bayesian network. This formalism rigorously clarifies an am-
biguity in the term ‘information flow’, which refers to both causal
flow and nomic (regular) associations between variables. We adopt
the term situated information flow for this sense of information flow
in causal context.

4.3.1 Bayesian networks. A Bayesian network represents the
joint probability distribution of a set of random variables with a
graph. Consider variables X1, ...,Xn where each Xi takes on values
in some set dom(Xi ). We use X to refer to the set X1, ...,Xn and
dom(X) to refer to their joint domain. A Bayesian network (BN)
represents the distribution onX using a graph whose nodes represent
the random variables and whose edges represent direct influence of
one variable on another.

Definition 4.2 (Bayesian network). A Bayesian network over
variables X = X1, ...,Xn is a pair (G, Pr ). G is a directed acyclic
graph with n nodes, each labeled for one of the variables in X. We
use Pa(X ) to denote the parents of X in the graph. Pr is a mapping
of each node X to a conditional probability distribution (CPD),
Pr (X |Pa(X )). (G, Pr ) specifies the joint probability distribution P
as the product of the individual nodes’ probabilities P (X |Pa(X )).
Formally, P (X) =

∏
X ∈X P (X |Pa(X )).

Example 4. (Figure 1) Alice will be on time for workW if she sets
her alarm A early enough and traffic T allows. Bad traffic can be
caused by construction C or an accident on the road D.

Bayesian networks give formal clarity to Dretske’s theory of infor-
mation flow. The conditional dependence functions between random
variables are the nomic relations between events and messages. If

B1

G B2

B3

Figure 2: The electrical grid G controls power to all the build-
ings Bi .

two variables are conditionally dependent on each other, and this
conditional dependence is known to the observer of one of the vari-
ables, then the observer can infer something (have knowledge of) the
other variables. Hence, by our definitions, the variables carry infor-
mation about each other. If privacy is appropriate information flow,
then the privacy of a system will depend on the causal relationships
between its components and the environment.

A directed edge between one variable and another indicates a
possible conditional dependence between them. Strictly speaking, it
does not necessitate that there is a conditional dependence between
them. For example, ifA is the only member of Pa(B), then there is an
edge from A to B, and there is a conditional probability distribution
P (B |A). In a degenerate case, this distribution may be such that
A ⊥⊥ B; in this case, the network is said to be not faithful to the
distribution [77]. This has been shown, under reasonable conditions,
to be rare in a measure-theoretic sense given the range of all possible
conditional probability distributions [54].

4.3.2 D-separatedness. A useful property of probabilistic
graphical models is that some aspects of the joint probability distri-
bution of all variables represented in the graph can be read easily
from the graph’s structure. Of particular interest in the analysis of
the joint probability distribution is when and under what conditions
two random variables are independent.

Definition 4.3 (Path). A path between two nodes X1 and X2 in a
graph to be a sequence of nodes starting with X1 and ending with
X2 such that successive nodes are connected by an edge (traversing
in either direction).

Definition 4.4 (Head-to-tail, tail-to-tail, head-to-head). For any
three nodes (A,B,C) in succession on a path, they may be head-to-
tail (A → B → C or A ← B ← C), tail-to-tail (A ← B → C), or
head-to-head (A→ B ← C).

There are two ways in which a variable A can be conditionally
dependent on another variable B without one of them being a descen-
dant of the other. The variables may share an unobserved common
cause (a tail-to-tail succession) or they may share an observed com-
mon effect (a head-to-head succession).

Example 5. (Figure 2) One building in a neighborhood loses power,
B1. One can guess that other buildings Bi around nearby lost power,
because power in each building is dependent on the electric grid G.
All the buildings may be affected by the common cause of a grid
failure.

Example 6. (Figure 1) Suppose we observe that Alice is late for
work W , as per our earlier example. This could be due to many
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reasons, including traffic T and missing her alarm A. Traffic may
be due to construction C or an accident D. The probability of any
particular cause is conditionally dependent on the others, because if
any one cause is ruled out, the others are more likely.

The existence of a path between two nodes is necessary for their
probabilistic dependence on each other. It is not sufficient, particu-
larly when considering their dependence conditional on other vari-
ables. For this reason, paths in a Bayesian network can be blocked
or unblocked based on a set of variables that is otherwise known or
observed, the conditioning set.

Definition 4.5 (Blocked path). A path is considered to be blocked
if either:
• it includes a node that is in the conditioning set C where the

arrows point to it do not meet head-to-head, or
• it includes a node where arrows do meet head to head, but nei-

ther this node nor any of its descendants is in the conditioning
set

Intuitively, association “flows” through a Bayesian network through
direct causal connections (head-to-tail), through common causes
(tail-to-tail), or through observed common effects (head-to-head).

Definition 4.6 (D-separation). If every path from X1 to X2 given
conditioning set C is blocked, then X1 and X2 are d-separated.

THEOREM 4.7. If X1 and X2 are d-separated conditioned on set
C, then X1 ⊥⊥ X2 |C.

PROOF. In [83]. □

The converse (that independence implies d-separatedness) is not
true in general because specific conditional distribution functions
can imply independence. Similarly, it is not generally true that the ab-
sence of d-separatedness implies conditional dependence. However,
is has been shown that conditional distribution functions imply-
ing conditional independence are rare in a measure-theoretic sense
[32, 48, 54, 77].

4.3.3 Intervention and causality. Bayesian networks support
a causal interpretation (as opposed to a merely probabilistic one)
through one additional construct, intervention [66]. An intervention
on a Bayesian network sets the values of one or more of its values.
Unlike an observation of a variable, an intervention effectively cre-
ates a new graphical model that cuts off the influence of a set variable
on its parents and vice versa. Descendants of the set variable are
affected by the intervention according to the probability distribution
of the original model.

Definition 4.8 (Intervention). An atomic intervention setting vari-
able Xi to x ′i on a Bayesian network G creates a new network G ′

with post-intervention probability distribution Prx ′i

Prx ′i (X1,X2, ...,Xn ) =



Pr (X1,X2, ...,Xn )
Pr (Xi=x ′i |Pa (Xi ))

ifXi = x ′i

0, otherwise

The intervention construct gives meaning to the directionality
of the edges of a Bayesian network. Without it, multiple Markov
equivalent graphs can represent the same probability distribution
P (X).

B

R

E

Figure 3: Test score ranks (R) distributed to Bob (B) and Eve
(E).

4.4 Ambiguity of information flow
We have drawn a connection between information flow in the Dretske’s
philosophical sense and Bayesian networks. A Bayesian network is
a way of representing the nomic dependencies between phenomena.
They are “nomic” because they describe probability distributions
that generalize over particular instances of a system’s functioning.
These nomic relations are factored out as an explicit structure of
causal relationships.

This reveals an ambiguity in the very concept of information flow,
illustrated in the following example.

Example 7. Alice, a teacher tells every student privately their test
score’s rank R (first in class, second in class, etc.) after every test,
with class participation used as a tie-breaker. Alice sends a message
B to Bob with the information that he has the second highest rank
in the class. Alice also sends a message E to Eve that she has the
highest rank in the class. From her message and knowledge of the
test environment, Eve learns from her message that Bob was told
that he was, at best, second in class. Did information about Bob flow
to Eve?

A formal representation of this example makes the root of the
ambiguity clear. Consider a three node Bayesian network where R is
the test results, B is the message sent to Bob, and E is the message
sent to Eve (Figure 3).

There is causal flow along the edges from R to B and from R to
E. But an observer of a single variable aware of the system’s laws
(nomic connections, graphical structure) can learn nomic associa-
tions of a message that inform about variables that are not in the
message’s causal history. Despite E neither causing nor being caused
by B, E reveals information about B.

The phrase “information flow” is ambiguous because the word
“information” is ambiguous [63]: it can refer to both a message and
the contents of a message. We do not favor either sense. Nor do we
favor either a view of “information flow” as merely a causal link
(a “data transfer”), or as merely an uncaused correlation between
observed phenomen. Rather, we propose that to resolve this ambigu-
ity, one has to recognize how the systematic creation and transfer of
messages–represented in general by a graph of causal flows–gives
each message its meaningful contents. We therefore refer to situated
information flows: causal flows that, by virtue of their place in a
larger causal structure, have nomic associations. Insisting on this
unambiguous formulation of “information flow” is the heart of SIFT.

4.5 Applying SIFT to privacy cases
SIFT can clarify each of the examples of privacy violations raised
in Section 2. In the first example, the purchase of scent-free hand
lotion gives away to Target the pregnancy of the purchaser. Viewed
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P B

Figure 4: Pregnancy (P) causes the purchases (B), so B carries
information about P . The store, knowing B and this relation, can
guess that the buyer is pregnant. B is associated with P though a
direct causal link. However, if the causal relation is not known,
the association will be opaque.

M

P

R

A

Figure 5: The personality of the data subject (P) causes social
media activity (M). It also causes the responses (R) to different
kinds of advertisements (A). The analyst knowing these rela-
tions can learn about R by observing M because these variables
share a common cause. This allows them to choose A to maxi-
mize their advantage.

through SIFT, this is due to the fact that pregnancy is a cause of
the purchase. This causal relation means that the purchase carries
information about the pregnancy (see Figure 4).

In the second example, the social media user is assumed to have
a stable personality that is expressed through their online activity.
This personality is also a cause of how they will respond to dif-
ferent kinds of targeted advertisements. For the analyst aware of
these connections, the data subject’s social media behavior carries
information about the subject’s susceptibility to ads, because these
variables share a common cause (see Figure 5).

In the third example, the data subject attempts to conceal their
location by turning off the GPS sensor of their smartphone, which
they know is caused by their location. However, their location also
causes the phone to connect with specific nearby cell phone towers.
The cell phone tower locations carry information about the location
of the smartphone user when the connected tower IDs are known,
because the connect tower IDs are an observed common effect (see
Figure 6).

SIFT shows how each of these privacy violation cases is the result
of probabilistic and causal relationships. The narrative of each story
can be illustrated in a simple graph, and the logic of how the violation
occurred is apparent through qualitative yet rigorous analysis of the
simple graph.

5 POLICY IMPLICATIONS
SIFT is intended to be a scientifically valid theory of information
flow based on probability theory. It is also intended to have simple
qualitative consequences that can clarify the reasons for privacy
violations and clarify information policy choices. SIFT indicates that
restrictions of data transfers will be more clear than restrictions on

G

L

I

T

Figure 6: The location of the data subject (L) causes the GPS
sensor reading (G). Seeking to hide her location information,
the data subject turns off the GPS sensor. However, the location,
combined with the locations of the cell phone towers (T ) causes
a specific sequence of tower IDs I . The smartphone provider is
able to use the tower locations T to learn about the location L
of the user if they can access the tower ID data I because I is a
common cause of L and T .

data flow, because data transfers more specifically refers to causal
flows, not flows of association. Where flows of information are
specified, these must be framed in terms of observer knowledge or
causal structure. And finally, SIFT reveals that the opacity of many
data processing systems is due to the complexity of the external
causal structure rather than the internal processes of the system.
When the generative processes of data can only be learned from data
aggregation, this creates a key information asymmetry between data
subjects and data processors.

5.1 Focus on data transfers
It can be difficult to determine what topics an information flow is
not about [60]. SIFT explains this by showing that the meaning of
information depends on the structure of its causal context, which
may be unknown. However, an information flow requires a causal
flow to convey any meaning at all.

This provides some motivation for practical policies to focus
on data transfers, as opposed to information flows. “Data transfer”
can refer to a causal flow without any assumptions about the data’s
semantics. The OECD and APEC guidelines are examples of policies
that refer only to data transfers without stipulating any rules about
specific categories of information. In contrast, privacy policies and
social expectations that restrict information naively based on its
contents may be unenforceable or ambiguous. This includes those
policies, like the CCPA and GDPR, that require data processors to
inform data subjects about the categories of information that they
have collected. SIFT predicts that the lists of categories provided to
data subjects will almost always be incomplete, because additional
meanings can be found in the data with more knowledge of causal
context. SIFT confirms that technical solutions that provide secrecy
or privacy regardless of data semantics, such as cryptography, are
robust and valid means of preserving privacy.
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5.2 Observer capabilities and generative
conditions

A second implication of situated information flow is that when poli-
cies and norms must refer to information ‘categories’ or meanings,
they ought to be defined in terms of either (a) a particular class of
observers and take into account their reasonable background infor-
mation, or (b) a known set of generative conditions that give the
information flow its nomic associations.

An example of a law that does this is COPPA. COPPA is very
clear about the grounds for associating information with children.
It covers service operators that either (a) have actual knowledge
that children use the system, or (b) are directed at children. The
second condition is a stipulation about the generative structure of
the information, or in other words the causal context in which the
flow is situated.

A serious challenge for implementing a system that’s automati-
cally compliant with such a policy is determining whether and how
a system can have any requisite causal knowledge. It has been ar-
gued that policy clauses that refer to the knowledge states of human
actors cannot be automatically enforced [23]. On the other hand,
learning probabilistic graphical structure from data is a well-studied
machine-learning problem [29–31]. It may be possible to hold a
machine learnt system accountable for inferences that it has been
able to make about its data. A direction for future work is developing
a theory of information flow security and privacy under conditions
where observer knowledge of nomic associations is itself a function
of system inputs. In simple cases this may reduce to single program
analyses studied in work on Use Privacy [19].

5.3 The opacity of information flows
Scholarly concerns about the opacity of data-driven systems–sometimes
referred to problematically as “algorithms” [26]– have raised many
questions about the interpetability of machine learning systems.
[25, 64] Burrell [12] has identified three sources of opacity: deliber-
ate secrecy of system operators, technical illiteracy of system users,
and the properties of machine learning systems that allow them to
scale usefully.

SIFT indicates a fourth way that the results of these systems may
be “opaque”: the causal context of data used and produced by them
may be unknown. The meaning of data depends on the network of
causal relations that it is situated in. That includes the computational
system and the wider environment the system is in. This causal
context is rarely represented directly in the data itself. It must be
inferred through a separate process.

If the causal context is discovered through the aggregation of
many data points, then an individual data subject may be unable to
see the meaning of data they give to a web service. This is illus-
trated by Example 2, about psychographic profiling, in Section 2. A
system’s opacity can therefore be due to information asymmetry be-
tween the user and the system operator. As information assymetries
are a well-known source of market failure [2], this raises questions
about whether the market for data-driven commercial services is
economically efficient [78].
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